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A new semi-classical approach to the treatment of elastic 
scattering and direct reactions 

B J B Crowley 
Department of Theoretical Physics, Oxford University, 1 Keble Road, Oxford, OX1 3NP, 
UK 

Received 29 June 1977, in final form 29 September 1977 

Abstract. In this paper we consider the short wavelength (semi-classical) limits of the 
s-matrix for elastic scattering, and the distorted wave Born approximation (DWBA) 
1-matrix for a direct reaction, and derive some interesting and useful formulae. One result 
takes the form of an integral representation of the elastic s-matrix which resembles the 
Poisson sum representation of the exact elastic s-matrix. 

The main result of this paper is a new approximate expression for the DWBA 1-matrix 
in which the main effects of the distorting potentials are described in terms of average 
elastic phase shifts. This approximation is applicable in various forms to the treatment of a 
wide range of direct nuclear and atomic reactions. It possesses a number of attractive and 
useful features offering some practical advantages over the original quantal expression. In 
particular the formulae are easy to evaluate and are amenable to detailed interpretation 
and further analytical approximation. Conditions for their validity are stated and demon- 
strate their wide range of applicability. More detailed discussion is given of application to 
peripheral reactions and to Coulomb excitation. 

1. Introduction 

Semi-classical techniques provide powerful approximations to quantum mechanical 
theories, and are applicable to a wide variety of problems in molecular, atomic and 
nuclear physics. They are a valuable aid to the understanding and interpretation of 
both theories and experimental data. This is only partly because semi-classical 
theories can often provide a more intuitive description of the system. In performing a 
detailed analysis of experimental data, semi-classical methods enable attention to be 
focused on features that may not be (easily) described by quantal calculations con- 
strained to fit the remainder of the data. This can sometimes lead to important 
conclusions that may otherwise be missed. 

In this paper we report the results of a study of the semi-classical limits of the 
elastic s-matrix and the distorted wave Born approximation (DWBA) t-matrix for a 
direct reaction. Some of these results are of practical importance, being directly 
applicable to the treatment of direct reactions. The results concerning elastic scatter- 
ing are given mainly by way of illustration, and because they have some relevance to 
the inelastic case. The methods used in their derivation are outlined in this paper in 
order to illustrate the ideas involved rather than to rigorously justify the final formu- 
lae. The plausibility of these formulae is apparent without the need to understand 
their derivation. The inelastic scattering calculation, though more complicated, 
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follows similar lines to those for elastic scattering. It is intended that full accounts of 
the derivations be published separately in due course. 

The definition of the semi-classical limit referred to is that adopted by Berry and 
Mount (1972)’ Koeling and Malfliet (1975) and others (e.g. Miller 1974, Connor 
1976). Semi-classical approximations to quantum theory are applicable when 
Planck’s constant f i  is small in the corresponding classical problem. (Following Berry 
and Mount, I shall abbreviate such statements by ‘ h  + 0’ or ‘h  - 0’). The semi-classical 
limit, ‘ f i  - 0’, is the lowest-order semi-classical approximation which takes full account 
of the various types of singularity at ‘ f i  = 0’. Such a theory provides a complete short 
wavelength description of the wave field, and thus not only describes classical particle 
dynamics in a real (or weakly absorbing) potential, but also wavelike phenomena such 
as interference, diffraction (such as may be due to strong absorption), reflection at an 
under-dense barrier and tunnelling through an over-dense barrier. In order to do so 
the theory must retain the superposition principle and take into account complex paths 
as well as real paths when dealing with the solutions (Keller 1958). 

In a real potential, consideration of just the real paths gives a full account of 
classical particle motion. Complex solutions of the classical equations of motion are 
often disregarded. These describe tunnelling and phenomena associated with wave- 
like behaviour which may be important in atomic and subatomic systems (Miller and 
George 1972, Miller 1974). Weak absorption gives rise to attenuation of particle flux 
along the various (real) trajectories and has little effect on the dynamics. Strong 
absorption, however, does affect the dynamics and may give rise to strong diffraction. 
In this case the complex nature of the assumed potential makes the consideration of 
complex paths obligatory. The treatment of complex trajectories in semi-classical 
scattering by strongly absorbing potentials is described in recent work by Knoll and 
Schaeffer (1975, 1976) and by Koeling and Malfliet (1975). 

In this paper several references are made to ‘classical solutions’. These are 
solutions which involve only a single turning-point (at the distance-of-closest- 
approach) and which do not require or imply solution of the connection problem in one 
dimension. For a real potential such solutions correspond to real classical trajectories. 
In the case of a complex potential the concept of a single classical turning-point, and 
hence of a ‘classical trajectory’, can be retained using the procedure of Crowley 
(1976). Such classical solutions are incomplete in that complex branches associated 
with reflections and multiple reflections involving other turning-points are ignored. 
Implications of this are discussed later. 

The reader should note that many discussions of the validity of semi-classical 
theories given in the literature (e.g. Frahn 1975, Harney et a1 1974) are relevant only 
to those approximations applicable to situations involving weak absorption when 
complex paths can be and are ignored. 

My investigations concern the semi-classical limits of the following: (i) the elastic 
scattering s-matrix, 

and (ii) the DWBA t-matrix describing a direct reaction (e.g. Austern 1970), 

tw = I &)* ( r )  UW(r)&)(r) d3r, 

where Uva(r) is the form-factor which includes information about the internal states 
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of the system. In the latter only the distorted waves, and Jk-), are treated 
semi-classically. The discussion is therefore equally applicable to other distorted wave 
theories such as the distorted wave impulse approximation (DWIA) and coupled 
channels theories (CCBA). 

2. The semi-classical wavefunction 

In the above equations, t,bz’(r) is an elastic scattering wavefunction, with outgoing 
wave boundary conditions, describing scattering by a spherically symmetric (optical) 
potential Va(r),  from the entrance channel (denoted by the subscript a). The elastic 
scattering wavefunctions, $k-)(r) and @-)(r),  both have ingoing wave boundary 
conditions and describe scattering by potentials V $  ( r )  = V $  ( r )  and V :  (r ) ,  into the 
exit channels P and y respectively. In the notation used here, P denotes an elastic 
scattering channel, and y denotes a reaction channel. Scattering states described by 
the wavefunctions t,bh+), t,bi-’ and $$-) may be denoted by a(+), P(- )  and y(-)  respec- 
tively. These wavefunctions are solutions of Schrodinger equations as follows: 

--v h2 2 *a (+) + v a * p = 2 * p ;  h2k2 
2M 2M 

where M and h2k?/2M are respectively the particle’s mass and energy. 
The first step in deriving the semi-classical limits of (1) and (2) consists of replacing 

the exact wavefunctions t,bc), I&-’* and &’* by the corresponding semi-classical 
wavefunctions which are approximate solutions of (3). These are 

wheret U E {a, 0, y }  and n E {n}E { {a } ,  {b } ,  {c } } .  The label n E {a,  b, c }  denotes classical 
trajectories passing through the point r. These trajectories may be complex. 
The presence of the sum over n to include all such trajectories reflects the multi- 
valuedness of the solutions of the classical problem. The functions W?) are the 
characteristic functions and are solutions of classical Hamilton-Jacobi equations 
(Goldstein 1969). Expressions for these and other quantities appearing in (4) are as 
follows (Crowley 1976, and to appear, Van Vleck 1928): 

t The notation is that (lower case) Latin letters are used to label trajectories while (lower case) Greek letters 
are used to label channels. The dummy label n dZnotes a general element of a set of labels In} which may be 
{a} ,  {b} or { c } .  In usage dummy labels, a, b and c, correspond respectively to channel labels, a, @ and 7, thus 
removing the necessity to simultaneously label both channel and trajectory. 



512 B J B Crowley 

where subscripts i, j denote components of a vector; and where pn denotes a local 
wavenumber according to: pa = (l/h)VWh+’, or p b  = (l/R)VWi-), or pc = (I/R)VW$-); 
L, is the angular momentum associated with the trajectory, namely 

L, = Irxp,I = rnpu(rn)  

p : ( r )  = k: - (2M/R)2Vv(r), 

with 

r, = \r,l where r, is the point-of-closest approach; &(L) is the JWKB phase shift, 

(with ro given by: L = ropY(rO)) which may be replaced by a more exact expression if so 
desired; and O,(L) is the deflection function defined by 

a O,(L) = 2 2 & ( L ) .  

The path integrals Ids, are taken along the classical trajectories with the limits ‘+CO’ 
and ‘-00’ indicating points at large distances away from the scattering centre and lying 
respectively on the outgoing and ingoing branches of the trajectory. The term 
- r p F ) ( r )  appearing in the phase ensures that the quantal wavefunction is single- 
valued for all values of r, provided that angular momentum is quantised according to 
the Bohr-Sommerfeld rule?, 

f Ld+ = 2v(I  +$), 

where 1 is an integer, and 4 is here the angular coordinate conjugate to L. The path 
integral @+ is taken once around the origin along a classical trajectory. The index 
F r ) ( r )  is an integer function of r and is equal to the number of complete times the 
trajectory n has encircled the origin in connecting -CO to r; pk-)(r) is given by 
pk-)(r) = m, - p r ) ( r )  where mn is an integer specifying the total number of complete 
times the trajectory encircles the origin in connecting -CO to +CO. The pf) define 
various branches of an orbiting trajectofy in such a way that W‘,“’ (and hence the 
wavefunction) is a single-valued function of position on the trajectory, n. In this way 
we cope with multi-valuedness associated with orbiting. However the functions are 
non-analytic near the discontinuities of pf). (Note that p f )  appeared originally as 
constants of integration when solving the Hamilton-Jacobi equation.) The problem is 
much the same as the one faced when dealing with a multi-valued function in the 
complex plane by the introduction of cuts. The various pF’ define a series of 
Riemann sheets in coordinate space, and the rule is, as in the complex plane, to stay 
on the same sheet wherever possible. The particular way the p’s and m’s have been 
defined here has the effect of introducing cuts in L-space at O(L)  = f (2n + l ) r ,  for 
integral values of n. 

t Which implies the Langer relation, L+ I +j. 
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The multi-valuedness of the classical solutions for fixed p may be represented by 
defining a single continuous folded surface (cf Riemann sheet) in such a way that the 
functions W and g are continuous and single valued on the sheet. The projection of 
this sheet onto ordinary coordinate space gives rise to regions of different multiplicity 
separated by caustics, Features of such a surface can be described in terms of 
catastrophes (Connor 1976, Zeeman 1976) which may be associated with folds in the 
surface, The projections of these folds onto coordinate space indicate caustic sur- 
faces-surfaces generated by rainbow trajectories or envelopes of many trajectories- 
across which the multiplicity of the classical solutions change. It is the presence of 
caustics associated with the variable multi-valuedness of the classical solutions 
determining W and g which makes integrals such as (1) and (2) involving semi- 
classical wavefunctions difficult to handle. 

The first step in overcoming this problem consists of finding a transformation 
which maps the classical solutions into a space in which they are defined and single 
valued for all values of the new coordinates. Such a transformation effectively 
’unfolds’ the ‘Riemann’ surface and, for this reason, I refer to such a transformation of 
variable as an ‘unfolding’. 

The new coordinates, in the case of motion in a spherically symmetric potential, 
are easily found, They may be taken to be (L, 7) where L is the angular momentum 
(in units of h) specifying a classical trajectory, and T is a coordinate related to time (in 
a parametric sense) uniquely specifying the position of a point on such a trajectory. A 
set of coordinates (L, 7) may thus specify, not only a unique point in the space of 
coordinates r, but also a unique trajectory through it. 

The second step involved in obtaining the results given in §§ 3-4, which permits 
simultaneous unfolding for both sets of functions W and g appearing in the integrals, 
is to make use of the fact that, in the semi-classical limit, contributions to the integrals 
come only from the neighbourhood of classical trajectories connecting the incoming 
channel a to the outgoing channel, /3 or y. The complete procedure for thus carrying 
out the transformation (r, n ) +  (L, 7 )  for integrals such as (1) and (2) is, in general, 
non-trivial. 

Whereas the transformation to (L, 7) constitutes an unfolding for classical solu- 
tions, extending the theory to include complex paths may lead to trajectories having 
complex branches, in which case the simple unfolding procedure outlined breaks 
down. However, the method may be generalised by noting that the transformation to 
(L, 7) is an unfolding for each branch (which we label by r). The complete unfolding 
will therefore include a sum over r. The generalisation, So(L), of the phase shift (7) 
includes a dependence on the pattern of reflections from several turning-points in one 
dimension. This is discussed in some detail by Knoll and Schaeffer (1976). The 
possible reflection patterns, r, correspond to different branches of the complete 
three-dimensional trajectory. The final sum over r thus constitutes a multiple- 
reflection series which may be summed to yield more manageable expressions for the 
s-matrix in the forms given by Brink and Takigawa (1977) and Lee and Takigawa 
(1977). 

In the elastic-scattering treatment which follows, the sum over r is omitted. 
Including it is equivalent to replacing the phase shift, as given by (7), by the exact 
JWKB expression which includes all multiple-reflection contributions. The exact 
quantal expression would also suffice. 

The discussion, as given, for the inelastic case is applicable to classical trajectories 
without complex branches. (This is equivalent to using a single-reflection approxima- 
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tion in one dimension (e.g. Crowley 1976).) It may be possible to generalise the result 
to include contributions from some complex branches such as those which correspond 
to a single reflection from one complex turning-point or to a single reflection from an 
interior turning-point preceded and followed by barrier penetration. Nevertheless the 
results of 0 4 are expected to be valid only for scattering in non-resonant situations 
such as one finds in the presence of strong absorption. 

3. The semi-classical s-matrix 

Substituting the semi-classical wavefunctions (4) into (1) leads to the following 
expression for the semi-classical s -matrix: 

A semi-classical unfolding of this integral carried out as outlined in the appendix leads 
to: 

S, , (O)=-r  1 I exp{i[(ka-ks)T+nm(L,4; e ) ] ) d ~ L d L d 4 ,  

where 

nm(L,  4 ;  6)=2S(L)-LO(L)-mn 

o a s n ,  (9) 1 +w 

ka m=-w 

+ ~L[COS Be)  sin(@ + mn)-sin(;d) cos($@ + mn)   COS^], (10) 
where S(L)=S,(L)=S,(L) is the phase shift; O = O ( L ) = O , ( L ) = O B ( L )  is the 
deflection; and 6 is the scattering angle which is the angle between the wavevectors k, 
and kB defined in the range 0 G 8 s P. The integer m labels the orbiting surfaces of 
the ‘Riemann’ sheet and was introduced so that, at a saddle-point of the phase, 

-P 6 0 + 2m7r =S T. 

The expression on the right-hand side of (9) contains a sum over all values of m and 
the above property of the index m is implicit because of the restriction on the range of 
values permitted to 8. The range of integration over the angular momentum variables, 
L and 4, in (9) is restricted to values in the vicinity of classical trajectories defined by: 

0 + 2 m ~ =  

and, if 0 # 0 or P, cos 4 = f 1. 
From (9) it follows immediately that 

Since n is O(l/A), the remaining two-dimensional integrals on the right-hand side 
of (11) may be evaluated directly, in the semi-classical limit, by a method of stationary 
phase (or saddle-point method for complex 0). The stationary points occur where 

for values of L and 4 such that the following are true. 
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(i) If 8 # 0,8 # T: 

4=0 ,  0 + 2 m ~ = 8  (12a) 

4 = ~ ,  0+2mtr=-8. (12b) 

0 + 2 m ~  = 0. (12c) 

0 + 2 m ~ =  *T. ( 1 2 4  

(ii) If 8 = 0: 

(iii) If 8 = T: 

(Note that at least two different values of m contribute to 8 = T ;  and that real values 
of 8 > T are dynamically forbidden.) 

(iv) Other saddle points are explicitly excluded. 

Confining integration over L to the vicinity of classical trajectories is equivalent, in the 
semi-classical limit, to integrating over all possible values of L, (0 G L G o0 ,O Q 4 < 
2 ~ ) ,  and subtracting from the result contributions arising from ‘spurious’ saddle- 
points. 

Since a2i2/aLa4 vanishes at any of the stationary points given by (12a)-(12d), a 
two-variable Taylor series expansion of i2 about a stationary point renders the 
integrals (11) separable when taken to second order. In the case of an isolated 
stationary point at L = Li and 4 = $T *$T, where 0(Li)+ 2 m i ~  = f 8, the result is 

provided that 8 is not near 0 or tr and O’(Li)+O. (The correct branch of the 
square-root depends upon the directions of the paths of steepest descent.) This leads 
directly to the following expression for the differential cross section (where di2 
represents an element of solid angle): 

d u =  2T I Li I 
di2 k: sin 8 O’(Li) 

which is equivalent to the classical expression. More generally Se, is a sum of 
contributions from several isolated stationary points (for which 0’(L) Z 0) which, by 
the superposition principle, may lead to a cross-section containing oscillatory inter- 
ference terms. The treatment of Glory scattering (8  = 0 or T)t and rainbow scattering 
(0’ 5 0) requires the use of different techniques (Ford and Wheeler 1959, Berry 1966, 
1969, Connor and Marcus 1971, Gross 1975, Frahn 1975). 

An s-matrix given as a sum of terms of the form of (13) is identical with that 
obtainable in the semi-classical limit of the analytic quantal s-matrix. Making use of 
the Poisson summation formula (Berry and Mount 1972, 9 6, Morse and Feshbach 
1953, p 467), the latter can be expressed in the following form: 

+m 

9 (14) ~ ( k o - k , )  C e-imw lom e2*imLpL-1/2(cos e )  e 2 i 8 ( L ) ~ d ~  
m=-m 

t The treatment of the 8 = T Glory requires that the 0 = * ( 2 n  + l ) ~  cuts be removed to 0 = f 2 n ~ .  This 
may be achieved by the transformation 0 + ?r - 0, m + m - 4 which leaves S, (equation (14)) invariant, 
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which is an exact representation of the more familiar partial-wave sum, 

where P,(x) is a Legendre function defined for -1 C x C 1. In the semi-classical limit 
the sum (15) is dominated by large values of 1. The Legendre function in each of the 
integrals in the Poisson sum (14) may therefore be replaced by one of its Bessel 
function approximations (Szego 1934, Berry and Mount 1972, equations (6.18b 
(6.20)) which are very accurate representations of the Legendre function for 1 Is 10. 
Thus, for example, one can derive the short wavelength representation, 

8 1/2 m = m  2 7  
S h  =T S(k6 - k, )  (G) 1 e-imrr 5 exp [i(2S(L)+27rmL 

ka m=-m 

- L8 COS 4)]L dL d4, (16) 
valid for 7r - O(l/Li)> 8 3 0, which bears a close resemblance to (1 1). In the above 
the Bessel function has been replaced by one of its integral representations; L and 4 
are plane polar coordinates, 0 sz L sz CO, 0 S 4 < 27r. Evaluation of the integrals by the 
stationary phase method described leads to an expression for SBp involving terms of 
the form of (13). 

A problem with (1 1) is the presence of spurious saddle-points which necessitates 
limiting the range of integration over L to the vicinity of those saddle-points 
representing classical trajectories. For 8 not too close to 7r it is possible to remove the 
spurious saddles by linearising the dependence of R on 0 + 2m7r * 8. This is done by 
‘approximating’ sin[$(@ + 2m7r * e) ]  and cos($@ + m7r) (1 * cos 4) by 4(@ + 2m7r * 8) 
and cos($8) (1 *cos 4) respectively for 4 = 0 (when the lower sign is taken) and 4 = 7r 

(when the upper sign is taken). This is equivalent to ‘approximating’ R as follows: 

and taking 4 to be in the range -$7r c 4 < $7r. Hence 
CC +=rr/2 47r 

S , , ( 0 ) = 7 S ( k Q  - k s )  e-imrr d 4  ImdL exp[2i(S(L)- 7rmL)] 
k a  m=-w +=-7r/2 0 

xcos[L(e-sin e(1-cos 4))]. 

The integral 

.L 
J 77 -v /2 

cos[L(8 -sin e ( l  -cos 4))] d 4  

may be evaluated exactly to yield 

cos(L(e -sin e))Jo(L sin 8)-sin(L(8 -sin 8))Ho(L sine), 

which is recognisedt as a large-L asymptotic form of PL-1/2(cos e )  for O s  8 < 
7r -O(l/L). Replacing this integral by PL-1/2(cos e )  yields the exact formula (14) for 

t By comparison with the Szego (1934) formulae (Berry and Mount 1972, equations (6.18b(6.20)) for 
L >> 1 and 8 such that L sin 8 >> 1 or L6s O(1) (see also Abramowitz and Stegun 1965, chaps 8, 9 and 12). 

%a* 
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This result may be shown more clearly, though less generally, by performing the 
4-integration for L sin 8 >> 1 (either by using the saddle-point method, or exactly and 
subsequently replacing the Bessel function by its asymptotic form). The spurious 
saddle-points may then be removed by linearising the phase as described, and one 
recovers just the Poisson summation formula ( 1 4 )  in which the Legendre polynomial 
has been replaced by its asymptotic form. 

These observations lead us to stating the following correspondence-principle 
theorem which will be of use later. 

If f (L )  is a function of L that is regular on Os L s m  and if f(L) PL-*j2 (cos 6) 
x 1 )  is .2’(2) for all 6 such that 7~ L 8 L 0; and If(L)/f(L)I =s O(L-’) for all 
L >> 1, then 

when the integral @. dL d 4  = d2L is confined to the vicinity of classical trajectories 
defined by (12a)-(12d). 

When the right-hand side of (17) is expressed as a sum of integrals using the 
Poisson summation formula, integrands on both sides contain the same contributing 
saddle points giving rise to the same asymptotic forms in the semi-classical limit. 

This theorem and the techniques used to obtain (9) have been applied to the 
treatment of inelastic scattering yielding important results as described in the next 
section. 

4. The semi-classical limit of the DWBA 

The DWBA t-matrix element (2)  may be expressed as a momentum-space integral of 
the form: 

Equation (20) is just a generalisation of ( 1 )  and techniques similar to those leading to 
(9)  may be applied. 

Substituting the semi-classical wavefunctions (4) into (20) leads to 

The points of stationary phase (saddle-points) for this integral occur where 

~c (r)-Pa ( r )  = 4, 
so that 4 can be interpreted as the impulse which connects the incoming trajectory, a, 
to the outgoing one, c. The function S,(q) is the amplitude for a process in which an 
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applied impulse q leads to a transition from the scattering state a(+) to the scattering 
state y(-). Folding S,(q) with the impulse spectrum F,(q) yields the r-matrix element 
tw according to (14). 

An approximate unfolding of the integral (21) may be achieved by assuming that q 
is restricted to values such that q / p  << 1; and that the reaction is effectively localised to 
the vicinity of points-of-closest-approach on the incoming and outgoing trajectories, 
where the potentials are sufficiently smoothly varying for motion to be locally 
rectilinear. This last assumption justifies local momentum approximations of the 
wavefunctions (4) which involve approximating 

[ : ~ n - d s n  by pn-r ,  n E {a, c), 

in the expressions for W?). In general, this approximation is likely to be poor for 
scattering into large angles. Conditions on the magnitude of 0 are made explicit in 
(27). A further assumption is that the potentials V, and V, are everywhere (except 
where obscured by strong absorption in both channels) similar in magnitude (of both 
real and imaginary parts), and do not give rise to significantly different scattering in 
the respective elastic channels. A treatment of all small quantities to at least first 
order leads to an approximate unfolding of (21) giving: 

1 M 
S,, ( 4 )  = p ~xP[; ( P 4 + 2 (A V - a)) 7 + i W L ,  4 ; x)] L dL d 4  d7, ( 2 2 )  

where 

k = $(k, + k,),  

P =;ha +Pc)=$(Pa(r )+pp , ( r ) )  (la +l,)sec(id), 
AV=V,-V,, 

h2 h2k 
2M M 

Q = - ( k ,  - k , ) = -  (k, -k , ) ,  

L = r x p ,  

&,(L, 4; x) is given by (10) (we note that large 0 is not consistent with the assump- 
tions involved in making the local momentum approximations so there is no need to 
include m # 0 terms) with 

0(L)=4(Oa(L)+@,(L))= 2- 
aL ’ 

and where 

where 

1 
2k 

cos 5 = 1 - 7  (k, -k, -q ) * .  
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Note that when q = 0 and AV = 0, the right-hand side of (22) reduces to the m = 0 
term in (9) when p replaces y. 

The derivation of equation (22) follows precisely similar lines to that used in the 
elastic case. Small quantities such as q / p ,  (r  X q)/L, O,(L)- O,(L) (all identically zero 
for elastic scattering) are treated only in lowest order. Nevertheless the algebraic 
manipulations become considerably more arduous. 

An approximate evaluation of the integral over T in (22) yields 

where 
p o  = b o  sec($@) ( f a  + 6)  = P O & ,  

P O  = &pa (ro) + p ~ r o ) ) .  

ro = LIP,, 

AVO= V,(ro)- V , ( ~ O ) ,  

U = hk/M, 

and ,yo is given by (23) with P O  replacing p .  The function 8 ( z )  is sharply peaked in 
energy or momentum space where it resembles the Dirac 8-function. It does, 
however, have a small finite width, 

evaluated for L and q such that the argument of 8 vanishes. (In the above: E = 
h2k2/2M; V = E - h2p2/2M.)  The corresponding width in L-space may, however, be 
large, being given by 

..-‘(q2 
L AE 

This finite width arises because the coefficient of T in the phase of (22) is itself a 
(slowly varying) function of T. As a result, contributions to the T integral come from a 
limited region of 7-space, as has already been implied by the condition pc -pa = q (for 
non-vanishing q or AV). In accordance with the second assumption we confine our 
attention only to contributions from the vicinity of points-of-closest-approach (T = T ~ ) .  

This is done by expanding the phase in powers of (7 -70 )  about a point-of-closest- 
approach and continuing the expansion up to third order. A significant contribution 
then only arises if the coefficient of (T - T ~ ) ,  the argument of the 8-function, is close to 
zero. This is so because our assumptions imply that the region of contribution should 
be large compared with the local wavelength. The width of the 8-function arises 
because of variation in the functions V and AV over the contributing region. 

In what follows it is assumed that Fya(q) is a sufficiently slowly varying function of 
q2 = q .  f to enable the 8-function to be treated like a true 8-function in q-space. This 
requires that terms of order Aqz dF,/aq, and (Asz)’ a2F,,/aqz, where Aq, = 
2MAE/h2lpo1, can be considered to be negligible. 

After performing the integration over q2 as in (18) the product 8Fw is replaced by 
a very slowly varying function of L. This permits application of the theorem expres- 
sed by (17 tbea r ing  in mind that previously made assumptions imply negligible 
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contribution from m # 0 terms-leading to the following result for an effective S,,(q) 
in the form of a partial-wave series: 

Other conditions for the validity of (26)  are given below, 

(i) Values of q are restricted to values such that 

-the last of these conditions follows from the requirement that 

which also implies 

1 I:, -cosx I <<sinX-sin 8. (27e)  

(ii) The potentials V, and V, give rise to similar scattering at energies E, and E, 
respectively. Stated more precisely: 

cos (i(0, - 0,)) = 1; ( 2 7 f )  
(iii) 

Q 2M(Q-AVo) IT << -; 
1 1  

which is the condition for the validity of the local momentum approximation. The 
length scale d is the smaller of ro and the absorption free-path at r = ro. Condition 
(27h) need not be very strictly satisfied. Since higher-order terms are of second order 
in aplar, the local momentum approximation should be good for 

and is still apparently reasonable if 

(as for Coulomb excitation when d - ro). 
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All of the above conditions apply to the principal partial waves contributing to the 
reaction, for which 1 >> 1. 

The plausibility of (26) and results following from there may be established by 
noting that: ( a )  it yields the correct limit at high energy (Crowley 1976, 1977 Crowley 
and Buck 1978); ( 6 )  it correctly yields the elastic-scattering limit for q = 0;  ( c )  in the 
plane-wave limit, V = AV = 0, the formulae yield good approximations to the plane- 
wave Born approximation in the forward angle region; ( d )  energy conservation near a 
point-of-closest-approach is correctly described by the condition, 

PO q / k  2: (Q-AVo)IRV. 
Further approximations to (26) may be usefully made when AL is sufficiently large 

for the argument of the 8-functions to be considered independent of L. The additional 
sufficient condition for this to be so is that AL. is greater than or approximately equal 
to the number of contributing partial waves. We shall consider the validity of such an 
approximation when the result is to be applied to a peripheral reaction (e.g. nuclear 
heavy-ion scattering) or to (pure) Coulomb excitation. In either case the approxima- 
tion involves the replacement of ro, within the 8-function argument, by a constant, R ,  
which may be given in terms of a particular value, A, of the angular momentum (as is 
appropriate in the treatment of a peripheral reaction when contributions come only 
from a limited range (-AA) of angular momenta centred about -A >>AA); or in terms 
of the scattering angle, 8, as expressed by the unperturbed-orbit equation (as is usually 
considered appropriate in the tre.atment of Coulomb scattering). 

Such an approximation is valid in the treatment of a peripheral reaction if ALB 
AA. Taking A to be of the order of the orbiting value (neglecting absorption) provides 
the following upper-limit estimate of (a  V/ar)ll=a : 

ar r = R  R '  
Cl 5 2(E - V ( R ) )  

Hence, assuming a(A V /  V)/ar  0, estimates of AE and AL are? (with the aid of 
(25)): 

where 

A2 E - V ( R )  -- 
k 2 R 2 -  E '  

and 

Q~+I = Q - A V ( R )  (28) 
is the effective Q-value. If A >> 1, kR >> 1 and E << 1 then AE/E << 1 and AL >> 1 so that 
the approximation is well justified if EAAS 1. 

t The arguments ignore the fact that V and A V  may be complex. However, simple arguments show that 
Im(p,,)-A-' for L = A ,  so it may be concluded that, for large A, dynamical effects of absorption are 
negligible. The important difiactiue effects of absorption are largely contained in the phase shifts. 
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In the case of Coulomb excitation, A and R may be taken to be given by the 
Rutherford formulae: 

n = 77 cot ;e, 
R = ( q / k )  (l+cosec%), 

where q is the Coulomb-Sommerfeld parameter, in terms of which V(r)= 2Eq/kr. 
Taking AV = 0, the widths A E  and AL are easily calculated from ( 2 5 )  and found to be: 

Unlike the previously described peripheral reaction, Coulomb excitation can involve a 
large number of partial waves with no definite cut-off in 1-space. However, the 
approximation under consideration is likely to be valid if 

AL >> A, 

which requires that 

(i.e. the collision should be non-adiabatic). 
Applying the techniques described to direct Coulomb excitation, in the limit of 

qQ/E = 0, yields the known (semi-) classical formulae (Huby 1958) for the pure EA 
electric multipole transition amplitudes, namely 

except for terms in low partial waves (I 5 A ) .  
Upon approximating (26) as described, the expression for St! (4) becomes: 

where P = Ak/R = po(A)k. 
This formula for S;!(q) has a very simple structure which is analogous to that of an 

elastic s-matrix. The partial-wave sum describes an angular distribution in the space 
of the angle x (which can be treated as being virtually independent of 1, on account of 
(27d))  in terms of average phase shifts. Analytical stationary-phase methods (Ford 
and Wheeler 1959) may be applied to this sum in order to derive other forms of (29). 

Another simplifying feature of the formula is that cosx depends upon 4 only 
through the length of the vector t = k, - k, - 4. Expressing the result (29) in terms of 
t :  
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where 

and 

In view of condition (27g) it is often possible, particularly at high energies, to 
neglect A Vefi altogether (Crowley 1977). 

Treating 8 ( z )  as a delta-function in the space of the variable t .  $ enables the 
momentum-space integral (19) for the DWBA t-matrix t,, to be expressed in the form 

A(t)F,,(s - t )  d2t, (31) 

where Sro(s - t )  is given by (30) and has been expressed in the form: 

S,, (S - t )  = S(G . t -MA Veff/(W))A(t). 

The integral (31) is carried out in the plane 

t . G = MA VeR/(hP) 

over values of t such that -1 d cos x d 1. A high-energy form of this formula, 
suggested by the eikonal approximation, has been proposed (Crowley 1976, chap. 2, 
Crowley and Buck 1978) and applied successfully to the treatment of direct single- 
nucleon transfer between heavy ions (Crowley 1976, chap. 3, 1977). 

The formulae derived in this section provide simple means of approximately 
evaluating the DWBA t-matrix; and particular advantage can be gained in the treat- 
ment of transfer reactions (Crowley 1976, 1977). The formulae offer several other 
advantages over the original quantal expression (2) in that they are amenable to 
further analytical approximation as well as clearer interpretation in terms of classical 
and semi-classical (including diffractive) models. 

5. Summary 

Section 2 of this paper contains a description of a semi-classical wavefunction pro- 
posed as a useful approximation for use in conjunction with distorted-wave theories. 
In particular, the local-momentum approximation described in 04 can be used to 
derive a wavefunction whose phase depends almost linearly on r and is therefore a 
possible means of treating recoil in transfer and knockout reactions. In this paper we 
are mainly concerned with semi-classical saddle-point-method approximations as a 
means of evaluating matrix elements involving these wavefunctions. 

In 0 3 and in the appendix we describe a technique for evaluating the semi-classical 
s-matrix and illustrate the connection between the resulting formulae, (1 l ) ,  (13) etc., 
and the exact quantal s-matrix expressed in the form of (14) with the aid of the 
Poisson summation formula. The theorem (17) is a statement of a principle of 
asymptotic equivalence based on the connection between the derived semi-classical 
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formula and the quantal partial-wave sum. The latter leads to more tractable expres- 
sions for the semi-classical s-matrix by employing the Poisson formula and Szego 
approximations for P,(cos e). The theorem is therefore useful as a means of intro- 
ducing a partial wave sum or any of its limiting forms into a semi-classical calculation 
in which expressions having the form of the left-hand side of (17) arise. 

The most important results of this paper are described in § 4. These follow from 
applying the methods outlined in 0 3 and appendix 1 to the treatment of the DWBA 
t-matrix (2), (18). The general form of the main result is equation (26) in which S,(q) 
is related to the DWBA t-matrix by (18). The main assumptions made in obtaining (26) 
are discussed and subsequently summarised in (27). Additional (weak) assumptions 
have to be made in order to deduce (29) and (30) and hence (31). These are discussed 
in detail in the context of peripheral reactions and pure Coulomb excitation. The 
formulae (26), (29) or (30) used in conjunction with (18) lead to simple expressions for 
the t-matrix, such as (31) in which A(t) has the form of 

and F,,(q) is just the Fourier transform of the form factor. The formulae do, 
however, contain all the essential physics and are capable of giving an excellent 
description of a reaction when the assumptions made are valid. They are applicable, 
for example, to nuclear heavy-ion direct reactions at moderately high energies (2 10 
MeV/nucleon) (Crowley 1976, 1977). Other important features of these formulae 
are summarised towards the end of the section. 
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Appendix 1. Outline of method leading to result expressed by equation (9) 

We begin by considering the asymptotic limit as ‘h+O’ of the expression for the 
semi-classical s -matrix, 

obtained at the beginning of § 3. The unfolding of this integral is subsequently 
achieved in this limit by making use of the property of Wn(r, f ikv)  that it is the 
generating function of a canonical transformation relating (r, n) to new ‘coordinates’ 
(L,,, 7) (e.g. Goldstein 1969). 

This integral (A. l )  is carried out, in the first instance, over real values of r. This 
may involve complex values of angular momentum associated with the trajectories a 
and 6,  particularly if the potential is complex. Since the wavefunction has been 
constructed to be an analytic function of r (except at certain well defined points) we 
can extend the r-integration to complex values of r and apply saddle-point methods to 
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evaluating the integrals. Therefore, in general, the procedure described here involves 
complex values of both angular momentum and coordinates. Trajectories relating to 
observable situations correspond to real values of energy and begin and end at real 
points in space (the points of observation). Thus, in a scattering problem, we are 
interested in real E and 8, while quantities such as p ,  L and r # fa, which are not 
directly observed, are allowed to become complex. See also Knoll and Schaeffer 
(1 976), and Koeling and Malfliet (1 975). 

In the semi-classical limit the phase of the integrand of (A.l) is O(l/h), so the 
latter is a rapidly varying function of r. The only contribution to the integral comes 
from the vicinity of stationary-phase (or saddle-) points where V W r )  = V Wi-), i.e. 
where pa = p b .  The points of stationary phase therefore lie on a classical trajectory (0) 
connecting the entrance channel a to the exit channel p. 

Let us consider a point r in the neighbourhood of such a trajectory. The phase 
(Wr’ - Wi-’)/h may then be approximated by expanding the functions W:’ and 
Wi-’ about their values on a neighbouring classical trajectory (0’) which connects the 
channels a’ and p’ chosen so that of  actually passes through r (see figure 1). 

_.-.-.- 
4 0  0-0 
k 

Fime 1. Diagram illustrating various trajectories (a, 6 , o ’ )  through a point P. The 
trajectory o (full curve) is a nearby classical trajectory for scattering from k, to ks. The 
trajectories a and 6 (chain curve), are incoming and outgoing branches of trajectories 
which intersect at P. These trajectories have incoming and outgoing asymptotic wavevec- 
tors equal to k, and kB respectively. The broken curve is the classical trajectory 0 ‘  

describing scattering from kb to kb, which is constructed so as to pass through P (see text). 

In what follows, when the subscripted trajectory label has been omitted, 0’ is to be 

Expanding WF’(r, hk,)/h and Wi-’(r, hke)/ri as Taylor series in powers of (k, - 
understood. 

kh) and (ke -kb) yields 

If @&(La) is not too large, we can approximate W r )  and Wi-’ by the first two terms in 
each of these series. However, unlike using a truncated Taylor series in r, this 
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procedure may have the effect of introducing 'spurious' saddle-points which have 
nothing to do with classical trajectories. To avoid picking up contributions from these 
it is necessary to explicitly restrict the ranges of integration to the vicinity of the 
classical trajectories. (The restriction on 0' ensures that the 'spurious' saddles do not 
lie too close to the classical trajectories.) 

Making use of the symmetry properties of the Hamiltonian, namely time 
independence and spherical symmetry of the interaction, it can be shown (appendix 2) 
that: 

where L is the angular momentum associated with o', and T is a parametric time 
coordinate (-00 s T S CO) specifying the position of r on 0'. With a suitable choice of 
time origin, 7 is related to time, t ,  during the motion, by T = hk't /m,  where k' = k &  = 
k b. 

The next step is to carry out the transformation from the coordinates r to the new 
coordinates (L, 7).  This is most easily done by choosing the wavevectors k& and k;3 so 
that: 

Ga+G, Gh+h;, 
G=m=m3 

and k = t ( k ,  + k , )=  Ik:l= lkb1, in addition to requiring that o' passes through r. It 
then follows that, for r close to 0, 

is the Jacobian of the transformation r + (L, 7).  The generating function of the 
transformation is W'"' ( r ;  k )  which is a solution of the Hamilton-Jacobi equation 
describing an ensemble with energy h2k2 /2m,  and having trajectories which are all 
parallel to f k at their points-of-closest-approach. The transformation is achieved by 
means of 

7=- aw'") L=-$-xi. a w(") 
ak ' 

The above relation between g?), gb-' and g'"' can be seen to hold when r lies on o 
(when o SE 0') by referring to equations (6)  and noting that 

1 a2 w(") aRj det -- =det  - ,  
i f i  ariak, 1 1 ari 1 

with Rj  = a W'"'/Aakj, and that R =a W(")/hak is equivalent, by the above, to (L, 7). 

For r close to o, the particular choice of k &  and kb described above leads to the 
disappearance of first-order terms in g'"' - (gbc'gi-')"2. Clearly any other choice of 
k& and kb which is equivalent to the above to first order in (k, -kL) and (k, -kb) 
would also have this property. 

The construction of the trajectory 0' is illustrated in figure 1. 



A new semi-classical approach to scattering 527 

A transformation of variables of integration may therefore be carried out using 
1 

k 2  
(gr’gb-’)1’2 d3r =- d2L d7. 

The 7-dependence of the phase is entirely expressed by the term 

[ ( k , - k h ) .  L h - ( k p - k b ) . L b ] 7 = ~ ~ . f h ( k , - k p ) ~ - ( k , - k p ) 7  

(neglecting terms of O((kk -k,)2)).  Integrating over 7 yields the energy delta- 
function in the form of S(k,  - ks) .  We therefore need only consider the remainder of 
the expression for values of the wavenumbers such that k, = kp  = k. 

Since r lies on 0’ we have by substitution of the solutions for W(+) and W(-) in the 
forms of (4a), that 

I 
-(W(+)(r,  M&)- W(-) ( r ,  ~ t k ; ) ) =  ~ s ( L ) - L o ( L ) - ~ T ,  
ti 

where S(L)= S,(L)= &(L) is the phase shift and 0(L) = 0,(L) = O p ( L ) =  0 is the 
deflection; the integer m specifies the total number of complete circuits of the origin 
made by o (since 0’ is constructed by analytic continuation from 0, m cannot change in 
going from o to 0’) and is given in terms of 0, = @(Lo) by: 

-T <Re(@, + 2 m ~ ) S  T 

(two values of m are possible when Re  0, is an odd multiple of T ) .  

trajectory is 

2S(L)-L@-mr-  (k ,  - kp)7  +(La X $: -kp x Lb). L 

Hence an approximation of the phase (Wr’ - Wb-’)/h in the vicinity of a classical 

= 2S(L)-L0 - mT - ( k ,  - kp)7+ 2L(cos(i8) sin(f0 + m T )  

-sin(&9) cos($@ + m T )  cos 41, (A.2) 
where 8 is the scattering angle which is the angle between k ,  and kp,  defined in the 
range 7~ 2 8 3 0; and 

cos 4 = L .  (Go x L,)/(L sin e). 
The angle 4 is thus the angle between the normal to the scattering plane and the 
angular momentum vector, L. The well known classical result that cos 4 = f 1 when 
8 # 0 and 8 # T follows from the stationary-phase conditions (12). 

Including contributions from all trajectories through each point r when performing 
the volume integration over r leads to the integral ld2L including contributions from 
all saddle-points given by (12a)-(12d). Each such saddle-point is characterised by an 
index m which must therefore be summed over. Hence the complete unfolding 
transformation is 

It is not necessary for saddle-points to exist for all m in (A.3). Where a term of 
given m does not contain any saddle-points in the integral its contribution in the 
semi-classical limit is zero. Since m may be expressed as an integer function of L, the 
final sum over m corresponds to piecewise integration over L. (Thus, although a sum 
over m appears in the final expression, m is not an unfolding coordinate.) 
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Note that the formula breaks down if a saddle-point occurs too close to a cut at 
O(L)= f (2n + 1 ) ~ .  (See first footnote in Q 3.) Finally we note that d2L can be 
represented in plane polar coordinates as LdLd4. The integrand has a cyclic depen- 
dence on 4, so 4 can take on values in any 27r interval. 

Combining (A.l), (A.2) and (A.3) leads to the result, 

1 "  
k ,  m=--00 

sb (0) = 2 I exp{i[ 26 (L)  - LO - m7r - (k ,  - kg)7 

+ 2L(cos(%)sin(~O + m7r) - sin&) cos($@ + m7r) cos 4)]}L dL d 4  dT, 

Appendix 2. Proof of the relations aW(r, hk) /a(Ak)  = TL +(I x L) /k .  

Lemma 1 .  Proof that a Wlak = AT. 

function S(r, Ak; t )  is given in terms of W(r, Ak) by 
If the Hamiltonian is independent of time t then (Goldstein 1969) the principal 

R2k2 
2m 

S(r, hk;  t )=  W(r, Ak)----t. 

Differentiating with respect to k gives: 

t 
as aw h2k 
ak ak m 
-=--- 

but aS/a(Ak) is just a constant, denoted by a, so that 

This shows that T is (with suitable choice of units and origin) related to time (in a 
parametric sense). 

The main part of the proof requires that the potential V ( r )  is spherically sym- 
metric about some origin 0 so that 

V ( r ) =  V(r) .  

We consider the properties of W(r, P) that result from such a symmetry. 

through an angle 4 in a right-handed sense about an axis, d, so that 
Let R(t$) be an orthogonal matrix or operator which acts upon a vector rotating it 

R(t$)P-P+t$xP, 

for first-order rotations through small angles. 

for first-order small-angle rotations, 
Let V R ( ~ $ )  be the operator which rotates a function through an angle 4. Again, 
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The characteristic function W(r, P )  for scattering by a central field V ( r )  must 
possess axial symmetry in r-space about an axis through 0 parallel to P. Rotation of 
P is therefore equivalent to a similar rotation of W(r) ,  so that 

W(r,  R(4)P)= U d 4 ) W ( r ,  P ) .  64.6) 

Hence, using (A.5), 

W(r,  R ( 4 ) P ) =  W ( r , P ) - + . ( r x V W ) =  W(r,  P ) - & . L ,  64.7) 

where 4 is a small angle, and 

L = r x p  = r x V W  

is the angular momentum. 

magnitude. Since, for P # 0, 
The general increment of P may be considered to be a rotation plus a change in 

SP=-P+ Sp* ( P y )  - x P, P 

P + S P = -  S p a  ' f i  + R( '97 P. 
P 

Therefore, by means of a Taylor expansion of 
(A.7): 

W to first order, and by making use of 

W(r, P + S P ) = p . p E +  W ( r , R ( F 7 P )  PXS 
P aP 

where = a W/aP (by lemma 1). 
Hence 

aw 1 - = T f i  +$B X L) aP 

or, writing P = hk, and replacing L by hL, 
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